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uncertainty increases via a darkening

virtual environment and observe these

dopamine bumps.

While this theory elegantly accounts for

the ramping puzzles, other dopamine

puzzles remain. For example, dopamine’s

encoding of state prediction errors10,11,

dopamine responding to motor actions

not yet paired with reward12, or its role in

reverse conditioning13. Trying to

understand the brain is like continually

entering into a deep dark forest where 2 +

2 = 5 and it is not clear which path is the

way out. It seems, for now, that if you stick

to the reward prediction error path, you’ll

make it out unscathed.
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Making sense of themetabolism ofmicrobial communities is a daunting task. Using denitrification as amodel
metabolism, a new paper shows that the rate of denitrification can often be predicted from genome contents,
and dynamical models can be composed to predict denitrification rates of communities of two to five
species.
There are rather a lot of microbes. Very

many individuals (upwards of 1030

globally1) and alsomany species. A recent

census estimated�106 total bacterial and

archaeal species, though the exact

number depends on how one defines

‘species’ for asexual organisms2.

Likewise, natural environments contain a

mixed-multitude: a gram of soil might

contain 107–109 individual bacteria3

representing thousands of taxa4. When

we inspect natural environments ranging

from soils and lakes to animal guts, we
find impressive variation between the

species found in similar habitats.

Consider a human example: our guts hold

thousands of species, with only limited

correlation between the species in

individuals’ microbiomes5. Is there any

order to be found in this chaos?

Recent research has repeatedly

highlighted a simple organizing principle

for understanding the bewildering species

diversity observed in similar habitats.

Crudely rendered: the species don’t

matter, but their metabolism does6–9.
Environments provide certain resources

(for example, plant detritus supplies

organic carbon10) and lack others (such

as the animal gut, which harbors low O2

concentrations11). If sugars and oxygen

are available, for example, the

environment can support many different

sugar-respiring microbes. Further, the

observed species composition will be

determined by a succession whereby

early arrivals degrade the resources

available (such as polysaccharides;

Figure 1A) and leave behind incompletely
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Figure 1. A metabolism-first view of microbial communities.
(A) In any environment, certain resources are renewed by natural processes. Plant detritus, for example,
contains macromolecules like proteins and polysaccharides. Various microbes are capable of degrading
these polymers to extract energy and make biomass (diagrammed as a pink spirochaete and purple and
yellow bacilli). This liberates monomers, creating a niche for specialists that typically partially oxidize
(‘ferment’) monomers to organic acids, creating yet another niche. (B) Because many different
microbes are capable of filling each of these niches, similar environments (such as animal guts) or
replicate experiments usually vary substantially in species composition. (C) The metabolic gene
contents of those same replicates are much more reproducible, suggesting that one might be able to
predict the metabolic fluxes (J1, J2, J3 in A) from the gene content of an environment.

ll
Dispatches
metabolized products (like sugars) whose

chemical identity determines which other

species can join the fray12,13.

Moreover, species can have

overlapping metabolic capabilities, so

many distinct stable ecologies can

exist8–10,13 (Figure 1A,B). Indeed, the

metabolic gene content of an ecosystem

has repeatedly been found to be much

more stable than its species

composition6,7,10 (Figure 1B,C). Put

another way: there are many more

microbial species than metabolic

capabilities, so there are many ways of

‘packing’ species into a stable community

that metabolizes available resources9,13.

The composition of microbial

communities is tightly constrained by the

availability of nutritional resources.

Further, species provide information

about community metabolism through

their genomes, which express the genes

necessary to conserve energy and

produce biomass using the resources

available. It stands to reason, therefore,

that wemight be able to predict metabolic

rates from the chemistry and gene

content of a natural environment

(Figure 1C). To do so, wemust accept that

metabolic rates are the primary trait of

interest in microbial communities and

measure them quantitatively. In addition

to rigorously testing our understanding of

metabolism, predictions of metabolic
R216 Current Biology 32, R213–R236, March
turnover would also be quite useful as

many important biogeochemical

processes, including the carbon,

nitrogen, and sulfur cycles, are

substantially catalyzed by microbes14.

These cycles are perturbed by human

activity (for example, CO2 emissions,

fertilizer application) and by global

change, so there is pressing interest in

predicting the metabolic rates of

microbial communities in the wild.

If this optimistic hypothesis — that

metabolic rates can be predicted from

gene content — is to be true for natural

environments like soils, then it must also

be true in the lab. A new paper by Karna

Gowda, Derek Ping, Madhav Mani, and

Seppe Kuehn15 breaks ground on this

proposition in the context of bacterial

denitrification. Denitrification is an

anaerobic respiration where the oxidation

of organic carbon (such as glucose) is

coupled to the sequential reduction of

nitrate (NO3
�) to nitrite (NO2

�), NO, N2O,

and finally N2 gas (Figure 2A). Here, NO3
�

acts as the terminal electron acceptor, the

role O2 plays in aerobic respiration. As

NO3
� is an excellent electron acceptor

(2 NO3
� ! N2 + 6 H2O, E’� z +700 mV),

microbes typically prefer it over most

alternatives other than dioxygen (O2 ! 2

H2O, E’� z +800 mV)16,17. By isolating

and culturing �80 diverse bacterial

denitrifiers (Figure 2A), Gowda et al.15
14, 2022
show that a simplemodel of denitrification

kinetics fits the measured dynamics of

NO3
� and NO2

� turnover for most

isolates. Moreover, the parameters of

these models can be predicted from the

denitrification genes in each isolate’s

genome and, in most cases, per-strain

models can be composed to predict the

denitrification rates of communities

comprised of two to five strains.

Some bacteria are capable of complete

denitrification, yet others only perform

parts of the pathway. Gowda et al.15

isolated bacterial denitrifiers from soil and

documented their phenotypes as NO3
�

reducers (Nar, 24 strains), NO2
� reducers

(Nir, 4 strains), and full denitrifiers (Nar/Nir,

52 strains) by incubating each isolate with

NO3
� or NO2

� and measuring nitrogen

oxide concentrations over time. The

authors found that nearly every isolate

performed all the metabolic activities

expected based on its genome,

highlighting the profound contribution of

the decades of controlled genetic and

biochemical experimentation that

established the foundational

understanding of denitrification upon

which this new work is based16.

Having measured NO3
� and NO2

�

concentrations over time, Gowda et al.15

proceed to ask if a simple ‘consumer

resource model’ can reproduce the

metabolite dynamics measured in pure

culture (Figure 2C,D). In their model, each

strain is characterized by four

parameters: two describing the per-cell

rates of NO3
� and NO2

� reduction (rA and

rI, mM/cell/hr units) and two describing

the yield of new cells (ɣA and ɣI, cells/mM

units). This simplified model accurately

reproduces metabolite dynamics and

final cell densities for �80% of isolates

across a wide range of culture conditions.

Now you might ask: do all the Nar

strains give similar model parameters?

What about Nar/Nir and Nir strains? Fit

values for rA, rI, ɣA, and ɣI vary over �2

fold, even within these phenotypic

designations. What might explain such

variation? Multiple distinct enzymes

catalyze key steps of denitrification, for

example the periplasmic (Nap) and

membrane-bound nitrate reductases

(Nar) or the copper (NirK) and

cytochrome-based (NirS) nitrite

reductases16. By predicting rA, rI, ɣA,
and ɣI from the subset of denitrification

genes in each genome, Gowda et al.15
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Figure 2. A stepwise approach to ‘domesticating’ denitrifying microbial communities.
(A) Gowda et al. isolated 78 strains and phenotypically characterized them as reducing NO3

� (Nar strains), NO2
� (Nir strains) or both (Nar/Nir). As the subsequent

pathway intermediates — the toxic NO, the greenhouse gas N2O, and N2 —were not measured, Nir and Nar/Nir strains may or may not be able to oxidize NO to
N2. (B) These strains were then sequenced and annotated, verifying that genotypes match phenotypes. (C) Gowda et al. then measured the concentrations of
NO3

� and NO2
� over time in monocultures, demonstrating that the rates of metabolic conversion could be fit to a simple linear differential equation model

described in (D). They further show that the four parameters of this single strain denitrification model — rA, rI, ɣA, and ɣI — can be predicted with high fidelity
from the complement of denitrification genes found in isolate genomes. (E) Consumer resource models assume individual strains interact only by competing
for shared metabolic resources, here NO3

� and NO2
�. Gowda et al. found that such an additive model of communal rates is accurate in most cases.
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show that genome contents can

accurately predict the dynamics of

nitrogen oxide turnover in pure

culture. Satisfyingly, their regressions

also give interpretable results, with genes

related to NO3
� metabolism being the

strongest contributors to rA and ɣA
prediction, and genes of NO2

�

metabolism likewise driving accurate

prediction of rI and ɣI.
Species are rarely found in isolation, so

Gowda et al.15 proceeded to investigate

whether their consumer resource model

can explain metabolite dynamics in co-

cultures. To do this, they assumed each

strain contributes additively to the rate

and yield of NO3
� and NO2

� reduction

(Figure 2E). This is equivalent to

presuming that strains interact only by

competing for shared metabolic

resources like NO3
� and NO2

� 9,13.

However, microbes can interact in many

other ways, for example, by secreting

antibiotics, altering the pH, or by altering

gene expression to adapt their

metabolism. We might have expected

these unmodeled factors to have

cooked their goose. Yet Gowda et al.15

found very strong agreement between

their zero-free-parameter predictions and
co-culture measurements in nearly all

cases.

Nearly all cases, but not all cases.

Whenever Nar and Nir strains were

cultured together in NO3
� media, the

consumer resourcemodels yielded worse

predictions. This observation suggested

that Nar+Nir pairs interact in a manner

other than resource competition, likely via

the toxicity of NO produced by Nir strains.

Consistent with this hypothesis, Nar

strains were less abundant than predicted

in such cultures, and the most-inhibited

strain lacked an NO reductase gene.

Gowda et al.15 describe a clever ‘fix’

where they treated Nar+Nir pairs

as a single species, which enabled

them to use data from pairs to improve

predictions of metabolism in communities

composed of three to five species.

There is much to learn from the

successes of this paper. For example,

that Nir strains are apparently rare (4/78

isolates), that genomes can predict

metabolite turnover in monoculture, and

that the majority of interactions between

isolates are quantitatively consistent with

resource competition. We note that the

quantitative measurement of metabolic

rates enabled many of these surprising
Current Bio
discoveries, which highlights that rates

are the trait of interest when studying

metabolism. One hallmark of impactful

work is that there is also much to learn

from its shortcomings. Microbes

commonly secrete toxic molecules, and

their toxicity often depends on the

chemical environment: for example, pH

determines the toxicity of NO16,18, and O2

concentration affects the toxicities of NO

as well as many antibiotics16,19. Further,

the chemical environment can vary

greatly over short distances — for

example, microbes can consume O2

faster than it diffuses20. The

challenge of modeling NO toxicity using

consumer resource models — a

challenge that was only apparent

because Gowda et al.15 quantified

metabolic rates — suggests that new

approaches will be needed to rationalize

metabolic turnover in more realistic

contexts like soils, guts and water

columns, where there is substantial

spatiotemporal variation in the chemical

microenvironment.
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Insect flight: Flies use a throttle to steer
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A new study of flight control in Drosophila using neurogenetic methods and a virtual reality flight arena has
revealed a group of descending neurons that fully activate the flight motor and steer the fly by independent
regulation of the left and right wings.
Animals of all shapes and sizes must

maintain stability to move through their

environment, but problems of stability

and control are particularly salient for

small insects. This stems from their small

body size and resulting susceptibility to

environmental perturbation, as well as

the aerodynamics of flapping wings,

which produce large torques from small

asymmetries in morphology or flapping

kinematics. Despite these challenges,

fruit flies and other insects maintain flight

for hours at a time during dispersal and
exhibit remarkable capabilities for

recovering from mid-air perturbations1,

aerial tumbles produced in rapid

takeoff2, and even loss of large portions

of one wing3,4. Although various passive

stability mechanisms mediated by

aerodynamics and biomechanics do

exist1,5,6, sensory responses are also

ubiquitous7–9, but these are less well

understood. In a paper in this issue of

Current Biology, Namiki, Ros et al.10

report a neurogenetic study that has

revealed a group of descending neurons
that independently regulates left and

right wing flapping amplitude and overall

flight motor output in fruit flies (Figure 1).

Their findings challenge prior thinking on

flight control in flies which supposed

steering and motor output were

functionally separate, much as steering

and acceleration are physically and

conceptually separate controls in

automobile driving. Their results have

implications for many other aspects of

flight control in insects and control of

movement in general.
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